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Abstract - Support Vector Machines (SVM) are powerful 
classification and regression tools. They have been widely 
studied by many scholars and applied in many kinds of 
practical fields. But their compute and storage requirements 
increase rapidly with the number of training vectors, putting 
many problems of practical interest out of their reach. For 
applying SVM to large scale data mining, parallel SVM are 
studied and some parallel SVM methods are proposed. Most 
currently parallel SVM methods are based on classical MPI 
model. It is not easy to be used in practical, especial to large 
scale data-intensive data mining problems. MapReduce is an 
efficient distribution computing model to process large scale 
data mining problems. Some MapReduce software were 
developed, such as Hadoop, Twister and so on. In this paper, 
parallel SVM based on iterative MapReduce model Twister is 
studied. The program flow is developed. The efficiency of the 
method is illustrated through analyzing practical problems. 
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1 Introduction 
 With the development of electronic and computer 
technology, the quantity of electronic data is in exponential 
growth [1]. Data deluge has become a salient problem to be 
solved. Scientists are overwhelmed with the increasing 
amount of data processing needs arising from the storm of 
data that is flowing through virtually every science field, such 
as bioinformatics [2-3], biomedical [4-5], Cheminformatics 
[6], web [7] and so on. Then how to take full use of these 
large scale data to support decision is a big problem 
encountered by scientists. Data mining is the process of 
discovering new patterns from large data sets involving 
methods at the intersection of artificial intelligence, machine 
learning, statistics and database systems. It has been studied 
by many scholars in all kinds of application area for many 
years and many data mining methods have been developed 
and applied to practice. But most classical data mining 
methods out of reach in practice in face of big data. 
Computation and data intensive scientific data analyses are 
increasingly prevalent in recent years. Efficient 
parallel/concurrent algorithms and implementation techniques 
are the key to meeting the scalability and performance 
requirements entailed in such large scale data mining 
analyses. Many parallel algorithms are implemented using 

different parallelization techniques such as threads, MPI, 
MapReduce, and mash-up or workflow technologies yielding 
different performance and usability characteristics [8]. MPI 
model is efficient in computation intensive problems, 
especially in simulation. But it is not easy to be used in 
practical. MapReduce is a cloud technology developed from 
the data analysis model of the information retrieval field. 
Several MapReduce architectures are developed now. The 
most famous is the Google, but the source code is not open. 
Hadoop is the most popular open source MapReduce 
software. It has been adopted by many huge IT companies, 
such as Yahoo, Facebook, eBay and so on. The MapReduce 
architecture in Hadoop doesn’t support iterative Map and 
Reduce tasks, which is required in many data mining 
algorithms. Professor Fox developed an iterative MapReduce 
architecture software Twister. It supports not only non-
iterative MapReduce applications but also an iterative 
MapReduce programming model. The manner of Twister 
MapReduce is “configure once, and run many time” [9-10]. It 
can be applied on cloud platform. It will be the popular 
MapReduce architecture in cloud computing and can be used 
in data intensive data mining problems. 
 Support Vector Machines are powerful classification 
and regression tools [11]. Many SVM software models have 
been developed, such as libSVM, lightSVM, ls-SVM and so 
on. LibSVM is taken as the most efficient SVM model and 
widely applied in practice because of its excellent property 
[12]. But SVM’s compute and storage requirements increase 
rapidly with the number of training vectors, putting many 
problems of practical interest out of their reach. The core of 
an SVM is a quadratic programming problem (QP), 
separating support vectors from the rest of the training data. 
For improving the training speed of SVM, many efforts have 
been done. Reference [13] accelerates the QP with 
‘chunking’, where subsets of the training data are optimized 
iteratively, until the global optimum is reached. Sequential 
Minimal Optimization (SMO) [14], which reduces the chunk 
size to 2 vectors, is the most popular of these algorithms. 
Eliminating non-support vectors early during the optimization 
process is another strategy that provides substantial savings in 
computation. Parallelization has been proposed by splitting 
the problem into smaller subsets and training a network to 
assign samples to different subsets [15]. Variations of the 
standard SVM algorithm, such as the Proximal SVM have 
been developed that are better suited for parallelization [16], 
but how widely they are applicable, in particular to high-



dimensional problems, remains to be seen. A parallelization 
scheme was proposed where the kernel matrix is 
approximated by a block-diagonal [17]. Most of parallel SVM 
are based on MPI programming model. Little research work 
has been done with MapReduce work. 
 Based on current research work of SVM and Twister 
MapReduce framework, the paper develops a parallel SVM 
model based on MapReduce. In this model, training samples 
are divided into subsections. Each subsection is trained with a 
SVM model. In this paper, libSVM is used to train each 
subSVM. The non-support vectors are filtered with subSVMs. 
The support vectors of each subSVM are taken as the input of 
next layer subSVM. The global SVM model will be obtained 
through iteration. The MapReduce based SVM model is 
encoded with Java language. 
 The following of the paper is organized as follows. 
LibSVM method is introduced briefly in part 2. The Twister 
model is introduced in part 3. MapReduce based parallel 
SVM model and its program flow is introduced in part 4. Two 
practical examples are analyzed with the proposed model in 
part 5. At last some conclusions are summarized.  
2 LibSVM 
2.1 Support Vector Machines 
 SVM first maps the input points into a high-dimensional 
feature space with a nonlinear mapping function  and then 
carries through linear classification or regression in the high-
dimensional feature space. The linear regression in high-
dimension feature space corresponds to the nonlinear 
classification or regression in low-dimensional input space. 
The general SVM can be described as follows. 
 Let 𝑙  training samples be 𝑇 = {(𝑥1,𝑦1),⋯ , (𝑥𝑙 ,𝑦𝑙)}, 
where 𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ {1,−1} (classification) or 𝑦𝑖 ∈ 𝑅 
(regression), 𝑖 = 1,⋯ , 𝑙. Nonlinear mapping function is 
𝑘�𝑥𝑖 , 𝑥𝑗� = ∅(𝑥𝑖)∅�𝑥𝑗�. Classification SVM can be 
implemented through solving the following equations. 
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 By introducing Lagrangian multipliers, the optimization 
problem can be transformed into its dual problem. 
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𝑠. 𝑡.  𝑦𝑇𝜶 = 0                              (2) 
0 ≤ 𝛼𝑖 < 𝐶, 𝑖 = 1,⋯ , 𝑙 

 After obtaining optimum solution  𝑎∗,𝑏∗, the following 
decision function is used to determine which class the sample 
belongs to.  

𝑓(𝑥) = 𝑠𝑔𝑛�∑ 𝑦𝑖𝛼𝑖∗𝐾(𝑥𝑖 , 𝑥)𝑙
𝑖=1 + 𝑏∗�              (3) 

 The classification precision of the SVM model can be 
calculated as  

Accuracy =
#correctly predicted data

#total testing data
× 100% 

2.2 libSVM 
 LibSVM is taken as the most efficient SVM software. It 
is an integrated software for support vector classification, 
regression, and distribution estimation. Most efficient 
analysis models are included. For example, C-SVC and nu-
SVC classification models, epsilon-SVR and nu-SVR 
regression models, and one-class SVM distribution 
estimation. For improving the classification correct rate, cross 
validation is adopted. For processing unbalancing 
classification problem, weighted and probability models are 
adopted. The detail of libSVM can be found in [12]. In this 
paper, C-SVC libSVM model is selected to analyze the 
classification problems. 

3 Architecture of Twister 
 There are many parallel algorithms with simple iterative 
structures. Most of them can be found in the domains such as 
data clustering, dimension reduction, link analysis, machine 
learning, and computer vision. These algorithms can be 
implemented with iterative MapReduce computation. 
Professor Fox developed the first iterative MapReduce 
computation model Twister. It has several components, i.e. 
MapReduce main job, Map job, Reduce job, and combine job. 
Twister’s programming model can be described as in figure 1. 

 
Fig. 1   Program model of Twister 

 MapReduce jobs are controlled by the client node 
through a multi-step process. During configuration, the client 
assigns MapReduce methods to the job, prepares KeyValue 
pairs and prepares static data for MapReduce tasks through 
the partition file if required. Between iterations, the client 
receives results collected by the Combine method, and, when 
the job is done, exits gracefully. The message communicate 
between job is realized with message brokers, i.e. 
NaradaBrokering or ActiveMQ. 
 Map daemons operate on computation nodes, loading 
the Map classes and starting them as Map workers. During 
initialization, Map workers load static data from the local disk 
according to records in the partition file and cache the data 
into memory. Most computation tasks defined by the users 
are executed in the Map workers. Twister uses static 
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scheduling for workers in order to take advantage of the local 
data cache. In this hybrid computing model, daemons 
communicate with the client through messages. 
 Reduce daemons operate on computation nodes. The 
number of reducers is prescribed in client configuration step. 
The reduce jobs depend on the computation results of Map 
jobs. The communication between daemons is through 
messages. 
 Combine job is to collect MapReduce results. It operates 
on client node. Twister uses scripts to operate on static input 
data and some output data on local disks in order to simulate 
some characteristics of distributed file systems. In these 
scripts, Twister parallel distributes static data to compute 
nodes and create partition file by invoking Java classes. For 
data which are output to the local disks, Twister uses scripts 
to gather data from all compute nodes on a single node 
specified by the user.  

4 Parallel SVM based on Twister 
4.1 Architecture of Parallel SVM  
 The parallel SVM is based on the cascade SVM model. 
The SVM training is realized through partial SVMs. Each 
subSVM is used as filter. This makes it straightforward to 
drive partial solutions towards the global optimum, while 
alternative techniques may optimize criteria that are not 
directly relevant for finding the global solution. Through the 
parallel SVM model, large scale data optimization problems 
can be divided into independent, smaller optimizations. The 
support vectors of the former subSVM are used as the input 
of later subSVMs. The subSVM can be combined into one 
final SVM in hierarchical fashion. The parallel SVM training 
process can be described as in figure 2.  

 
Fig. 2   training flow of parallel SVM  

 In the architecture, the sets of support vectors of two 
SVMs are combined into one set and to be input a new SVM. 
The process continues until only one set of vectors is left. In 
this architecture a single SVM never has to deal with the 
whole training set. If the filters in the first few layers are 
efficient in extracting the support vectors then the largest 
optimization, the one of the last layer, has to handle only a 
few more vectors than the number of actual support vectors. 
Therefore, the training sets of each sub-problems are much 
smaller than that of the whole problem when the support 
vectors are a small subset of the training vectors. In this 
paper, libSVM is adopted to train each subSVM.  

4.2 Program flow 
 From the parallel SVM architecture, the pseudo program 
code based on Twister is as follows. 
Preparation 
 Computation environment configuration 
 Data partition and distribution to the computation nodes 
 Create partition file 
Main class 
 JobConf; //configure the MapReduce parameters and classnames  
 TwisterDriver; //to initiate the MapReduce tasks   
 While(condition)  //not combined to one SVM 
     JobConf;  //reconfigure the MapReduce parameters;  
     TwisterDriver; // initiate new MapReduce tasks, Broadcast combined 

support vectors to each computation node;  
     Get feedback results; 
 If(condition) break; // if one SVM obtained, program finished 
End mian class 
Map class 
 If(the first layer SVM) 
     Load data from local file system; 
 else 
     Read data broadcasted by Main class 
 End if 
 Svm_train(); //the parameters of the SVM model are transformed through 

jobConf. 
 Collector;  //sent the training result to Reduce job through message. 
End Map class 
Reduce class 
 Read data transformed from Map job; 
 Combine support vectors of each two subSVM into one sample set. 
 Collect; //feedback all the trained support vectors 
End Reduce class 

 Firstly, computation nodes should be available. The 
program can be described as follows. Original large scale data 
D should be partitioned into smaller data sections 
{D1,⋯ , Dn}. These data sections are put to computation 
nodes. Then create partition file according to Twister 
command. The partition file will be used in Twister 
configuration. 
 Based on the available computation environment,  
jobConf is used to configure the computation parameters, 
such as Map, Reduce, and Combine class names, number of 
Map tasks and Reduce tasks, partition file and so on. 
TwisterDriver will initiate the MapReduce task. Dynamic 
parameters will be transformed to each computation node 
through API interface.  
 In each computation node, Map tasks are operated. In 
the first layer of figure 2, sample data are loaded from local 
file system according to partition file. In the following layers, 
the training samples are support vectors of former layer. 
LibSVM is used to train each subSVM. In the LibSVM, 
Sequential Minimal Optimization is used to select the workset 
in decomposition methods for training support vector 
machines [14]. C-SVC model is used to train classification 
SVM. Trained support vectors are sent to the Reduce jobs.  
 In the Reduce job, all support vectors of all Map jobs are 
collected together and feed back to client. Through iteration, 
the training process will stop when all subSVM are combined 
to one SVM.  



4.3 Computation time analysis 
 The time cost of SVM can be divided into following 
sections. The computation time complexity of libSVM is 
O(n2). The transformation time of data between Map and 
Reduce nodes is depend on the bandwidth of the connection 
network. The transfer time can be described as ttrans. The 
combination time cost of two SVMs is O(n). When training 
data set is divided into m partitions, the computation cost is 
calculated as follows. The layers of cascade SVM is N =
log2 m. Suppose that the ratio between the number of support 
vectors and that of whole training sample is α (0 < α < 1) 
and the ratio between support vectors and that of training 
sample except the first layer is β(1 < β < 2), i.e. the number 
of the last layer in Fig. 2 is  nN = nαβ and the number of 
training sample of the first layer is almost 𝑛1 = 𝑛/𝑚.  The 
number of training samples of the 𝑖 layer is 𝑛𝑖 = 𝑛𝛼𝛽 ∗

�𝛽
2
�
𝑁−𝑖

. So the computation time can be calculated as follows. 
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 Overhead of data transfer mainly includes three parts. 
The first part is data transfer from Maptask nodes to 
Reducetask nodes. The transferred data are the support 
vectors obtained by Maptask nodes. The second part is data 
transfer from Reducetask nodes to server node. The 
transferred data is the support vectors also. The third part is 
the data transfer from server nodes to Maptask node. The 
transferred data is the training samples combined by two 
subSVM’s support vectors. The overhead of data transfer 
depend on the bandwidth of the MapReduce cluster.  
 From the architecture of parallel SVM, we can find that 
it is hierarchal structure. The low level SVM training has to 
be performed when all the upper level subSVM be trained. In 
the last level of the architecture, all the support vectors should 
be included in the training samples. The sample size must be 
bigger than the number of support vectors. When the ratio 
between support vector and training sample is bigger the 
speed up will be less. It is the shortcoming of the cascade 
SVM model. 

5 Examples 
 All examples are analyzed in India cluster node of 
FutureGrid. Eucalyptus platform is adopted to configure the 
MapReduce computation environment. Twister0.9 software is 
deployed in each computation nodes. ActiveMQ is used as 
message broker. The configuration of each virtual machine is 
as follows. Each node is installed Ubuntu Linux OS. The 
processor is 3GHz Intel Xeon with 10GB RAM. 

5.1 Adult data analysis 
5.1.1 Data source 
 The source data are downloaded from NEC laboratory 
American Inc. website http://ml.nec-

labs.com/download/data/milde/. In the adult database, 123 
attributes are labeled 2 classes. Each attribute denoted by 
binary variable, i.e. 0 or 1. Labels are denoted by +1 or -1. It 
is a binary classification problem. The database includes two 
files. One is used for training and the other is used for testing. 
The training file includes 32562 samples. The testing file 
includes 16282 samples. In this example, 5 computational 
nodes are used. Training data are partitioned into n sections 
randomly. Each section has roughly equal number data.  

5.1.2 Training process 
 The problem is taken as a binary classification problem. 
C-SVC model is adopted. The parameter of the SVM model 
is set as follows. Constant C is set 1, radial basis function is 
taken as kernel function, and gamma is set as 0.01. Firstly, the 
example is analyzed with only 1 computation node, i.e. 
classical SVM method is used to train the SVM model. The 
trained model is used to predict the testing samples. The 
training time and classification correct rate are listed in Table 
1. Secondly, the example is analyzed with the parallel SVM 
based on map/reduce. For comparison, the sample is 
partitioned into 2, 3, 4, 5 sub-samples respectively. When the 
sample is partitioned into 2 sub-samples, 2 computing nodes 
are used. The training time and classification rate of each 
partition form are listed in table 1. And so forth to the other 
partitions. 

Table 1   analysis result of SVM with different partition nodes 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 11957 490.591 84.82 
2 11933 281.152 84.98 
4 11908 239.914 83.06 
8 11887 237.441 82.74 

5.1.3 Feature selection with correlation coefficient 
 In the example, there are 123 attribute variables. Most 
variables provide minor contribution in the classification. For 
improve the training speed and reduce the noise effect of 
attribute variables, correlation coefficient is used to measure 
the correlation between class variable 𝑌 and attribute variable 
𝑋. The attribute variables are selected according to the 
correlation values. The correlation coefficient is calculated as 
the following equation. 

𝜌𝑋,𝑌 = 𝑐𝑜𝑣((𝑋,𝑌)
𝜎𝑋𝜎𝑌

= 𝐸[(𝑥−𝜇𝑋)(𝑦−𝜇𝑌)]
𝜎𝑋𝜎𝑌

             (5) 
where 𝑐𝑜𝑣((𝑋,𝑌) is the covariance of the two variables, 
𝜎𝑋,𝜎𝑌 are the standard deviations of 𝑋 and 𝑌. After 
calculating the correlation coefficient, the pruning value is set 
0.1. At last, 34 attribute variables are selected. The training 
result is listed in table 2.  

Table 2   analysis result of SVM based on feature selection 
nodes 

Number  
Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 11702 154.098 84.10 
2 11694 94.338 84.06 
4 11710 86.142 83.95 
8 11692 83.57 82.99 

5.1.4 Results analysis 
 The analysis results are shown as in Fig.3 and Fig. 4. 
From Fig.3 we can find that the training time can be reduced 
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greatly when the sample is partitioned 2 parts. But with the 
increase of partition number, the training time reduction will 
become slow. From Eq. (8), the computation cost mostly 
concentrate on the training calculation of each subSVM. The 
example was analyzed in HPC cluster. The data transfer time 
cost is minor. In this example, the ratio α ≈ 0.35 and β ≈
1.2. The last layer will occupy the mainly part computation 
time and it will not decrease with the increase of partition 
number. With the decrease of α, the computation time can be 
reduced more. With the introduction of feature selection, the 
computation can be reduced greatly without decreasing the 
correct classification rate.  

 
Fig. 3   Training time based on different partition nodes 

 
Fig. 4 Correct rate based on different partition  

5.2 Forest Cover type Classification 
5.2.1 Data source 
 The source data are downloaded from 
http://ftp.ics.uci.edu/pub/machine-learningdatabases/covtype/. 
The data is used to classify forest cover type. The original 
data are collected by Remote Sensing and GIS Program, 
Department of Forest Sciences, College of Natural Resources, 
Colorado State University. Natural resource managers 
responsible for developing ecosystem management strategies 
require basic descriptive information including inventory data 
for forested lands to support their decision-making processes. 
The purpose is to predict the forest cover type according to 
cartographic variables’ values. The square of each observed 
section is 30 x 30 meter cell. There are 54 columns in each 
data item. They denote 12 variables, i.e. Elevation, Aspect, 
Slope,Horizontal_distance_to_hydrology,Vertical_Distance_
To_Hydrology,Horizontal_Distance_To_Roadways,Hillshade
_9am,Hillshade_Noon,Hillshade_3pm,Horizontal_Distance_
To_Fire_Points, Wilderness_Area, and Soil_Type, where 
Wilderness_Area is denoted by 4 binary columns and 
Soil_Type is denoted by 40 binary columns. They are labeled 
as 7 cover types, i.e. Spruce/Fir, Lodgepole Pine, Ponderosa 

Pine, Cottonwood/Willow, Aspen, Douglas-fir, and 
Krummholz. There are 581012 samples in total. In this 
example, 28000 samples are taken as training samples and the 
left are taken as test samples. 

5.2.2 Analysis preparation 
 In this example, 5 computational nodes are used. 
Training data are partitioned into n sections randomly. Each 
section has roughly equal number data. Each attribute is 
normalized according to the following equation. 

 Let X denote attribute variable. The maximum value of 
X is xmax and the minimum value is xmin. The range of 
normalized attribute is set [0, 1]. The normalized equation is 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥min

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

5.2.3 Training process 
 The problem is taken as a multi-value classification 
problem. Multiclass classification is realized with pairwise 
method, i.e. k class SVM is realized through k(k − 1)/2 
binary SVMs. The “one against one” strategy, also known as 
“pairwise coupling”, “all pairs” or “round robin”, consists in 
constructing one SVM for each pair of classes. Thus, for a 
problem with k classes, k(k-1)/2 SVMs are trained to 
distinguish the samples of one class from the samples of 
another class. Usually, classification of an unknown pattern is 
done according to the maximum voting, where each SVM 
votes for one class.  
 In this example, C-SVC model is adopted. The 
parameter of the SVM model is set as follows. Constant C is 
set 1, radial basis function is taken as kernel function, and 
gamma is set as 0.01. Firstly, the example is analyzed with 
only 1 computation node, i.e. classical SVM method is used 
to train the SVM model. The trained model is used to predict 
the testing samples. The training time and classification 
correct rate are listed in Table 2. Secondly, the example is 
analyzed with the parallel SVM based on map/reduce. For 
comparison, the sample is partitioned into 2, 3, 4, 5 sub-
samples respectively. When the sample is partitioned into 2 
sub-samples, 2 computing nodes are used. The training time 
and classification rate corresponding to each partition form 
are listed in table 3. 

Table 3  analysis results with different partition nodes 
nodes 
Number  

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 22177 396.125 58.76 
2 21831 297.32 58.35 
4 20941 251.402 58.24 
8 20139 219.346 57.96 

5.2.4 Feature selection with correlation coefficient 
 In the example, there are 54 attribute variables. Most 
variables provide minor contribution in the classification, 
especially the Soil_Type variables. For improve the training 
speed and reduce the noise effect of attribute variables, 
correlation coefficient Eq. (9) is used to select attribute 
variables. After calculating the correlation coefficient, the 
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pruning value is set 0.1. At last, 18 attribute variables are 
selected. The training result is listed in table 4.  

Table 4   analysis result of SVM based on feature selection 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 14624 82.022 57.46 
2 14198 58.899 57.99 
4 13298 55.154 58.57 
8 12207 45.029 58.65 

5.2.5 Result analysis 
 This example is a multiclass classification problem. 
How to improve classification correct rate of multi-class is 
still a big problem. From Fig.5 we can find that the training 
time can be reduced greatly when the sample is partitioned 2 
parts. But with the increase of partition number, the training 
time reduction will become slow. In this example, the ratio 
α ≈ 0.4 and β ≈ 1.2. It is similar to the analysis problem of 
example 1. With the introduction of feature selection, the 
computation can be reduced greatly. From the analysis correct 
rate we can find that correct rate will not decrease too much.    

 
Fig. 5   training time based on different partition nodes 

 
Fig. 6  Correct rate based on different partition 

5.3 Heart disease classification  
5.3.1 Data source 
 There are 270 clinic reports. Each report includes 13 
factor variables.  Clinic is divided into 2 classes. For testing 
the efficiency of the proposed cascade SVM, we replicate the 
data 500 times, 1000 times, and 2000 times separately. The 
generated data sets has 135000, 270000, 540000 samples 
separately. The initial data set is used to test the SVM model. 
The training time and correct rates based on different partition 
styles are listed in table 5, table 6 and table 7 respectively.  

 
 
 

Table 5  analysis result with data replicated 500 times 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 7585 313.755 99.629 
2 7712 148.184 99.259 
4 7690 87.523 98.518 
8 7487 76.773 98.148 

Table 6  analysis result with data replicated 1000 times 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 8972 539.28 100 
2 9055 234.49 99.63 
4 8739 123.887 98.15 
8 8688 86.503 97.41 

Table 7  analysis result with data replicated 2000 times 
Number 
of nodes 

Number 
of SVs 

Training 
time(s) 

Classification 
correct rate 

1 N/A N/A N/A 
2 9901 578.507 100 
4 9650 266.587 99.63 
8 9202 158.531 99.63 

 The analysis result is shown as in figure 7, figure 8 and 
figure 9.  

 
Figure 7   training time based on different partition nodes 

 
Figure 8  Correct rate based on different partition 

 
Fig. 9   training time based on different parallelism corresponding to 

different sample size 
5.3.2 Result analysis 
 From the above analysis results we can find that the 
bigger the sample size the more obvious of the speed up. 
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From figure 7, we can find that when the sample size is very 
big, i.e. 540000 samples, it can’t be processed with one single 
computation node. It is out of the memory. It is necessary to 
process big size problem with parallel style. The training time 
will decrease slowly when the parathion number is bigger 
than 8. It is because of two reasons. The first reason is that he 
ratio between optimum computation time and data transform 
overhead is less. The other reason is that the sample size of 
the last level can’t be less than the number of support vectors. 
The computation cost will account a big proportion. So the 
computation will decrease very slowly.   From fig. 9 we can 
find the computation time based on different partition style is 
approximate linear relationship to sample size.   

6 Conclusions 
 Data-intensive data mining is still a big problems faced 
by computer scientist. SVM is taken as a most efficient 
classification and regression model. The computation cost of 
SVM is square proportion to the number of training data. 
Classical SVM model is difficult to analyze large scale 
practical problems. Parallel SVM can improve the 
computation speed greatly. In this paper, parallel SVM model 
based on iterative MapReduce is proposed. It is realized with 
Twister software. Through example analysis it shows that the 
proposed cascade SVM based on Twister can reduce the 
computation time greatly. But it doesn't mean that it is better 
to partition sample data into many parts. The computation 
time will not decrease through the analysis of the computation 
time. The partition number can be estimated according to the 
concrete problems. For increase the computation speed, the 
cascade SVM can be combined with other feature selection 
and feature extraction methods. In total, the analysis results 
show that the parallel SVM based on iterative MapReduce is 
efficient in data intensive problems. 

Acknowledgements 
 This work is partially supported by Provincial 
Outstanding Research Award Fund for young scientist (No. 
BS2009DX016) and Provincial Fund for Nature project (No. 
ZR2009FM038).  

References 
[1] J R Swedlow,  G Zanetti, C Best. “Channeling the data 

deluge”. Nature Methods, 2011, 8: 463-465. 
[2] G C Fox, X H Qiu et al. “Case Studies in Data 

Intensive Computing: Large Scale DNA Sequence 
Analysis.” The Million Sequence Challenge and 
Biomedical Computing Technical Report, 2009 

[3] X H Qiu, J Ekanayake, G C Fox et al. “Computational 
Methods for Large Scale DNA Data Analysis.” 
Microsoft eScience workshop, 2009 

[4] J A Blake, C J Bult. Beyond the data deluge: “Data 
integration and bio-ontologies.” Journal of Biomedical 
Informatics, 2006, 39(3), 314-320. 

[5] J Qiu. “Scalable Programming and Algorithms for Data 
Intensive Life Science.” Applications Data-Intensive 
Sciences Workshop, 2010 

[6] R Guha, K Gilbert, G C Fox, et al. “Advances in 
Cheminformatics Methodologies and Infrastructure to 
Support the Data Mining of Large, Heterogeneous 
Chemical Datasets.” Current Computer-Aided Drug 
Design, 2010, 6: 50-67. 

[7] C C Chang, B He, Z Zhang. “Mining semantics for 
large scale integration on the web: evidences, insights, 
and challenges.” SIGKDD Explorations, 2004: 6(2):67-
76. 

[8] G C Fox, S H Bae, et al. “Parallel Data Mining from 
Multicore to Cloudy Grids.” High Performance 
Computing and Grids workshop, 2008 

[9] B J Zhang, Y Ruan et al. “Applying Twister to 
Scientific Applications.” Proceedings of CloudCom, 
2010 

[10] J Ekanayake, H Li, et al. “Twister: A Runtime for 
iterative MapReduce.” The First International 
Workshop on MapReduce and its Applications of ACM 
HPDC, 2010  

[11] C. Cortes, V. Vapnik. “Support Vector Networks.” 
Machine Learning,1995, 20: 273-297 

[12] C C Chang, C J Lin. “LIBSVM: a library for support 
vector machines.” ACM Transactions on Intelligent 
Systems and Technology, 2011, 27(2): 1-27. 

[13] B Boser, I Guyon, V Vapnik. “A training algorithm for 
optimal margin classifiers.” The 5th Annual Workshop 
on Computational Learning Theory, 1992. 

[14] R E Fan, P H Chen, C J Lin. “Working set selection 
using second order information for training SVM.” 
Journal of Machine Learning Research, 2005, 6: 1889-
1918. 

[15] H P Graf, E Cosatto, et al. “Parallel support vector 
machines: the Cascade SVM.” Advances in Neural 
Information Processing Systems, MIT Press, 2005. 

[16] A Tveit, H Engum. “Parallelization of the Incremental 
Proximal Support Vector Machine Classifier using a 
Heap-based Tree Topology.” Tech. Report, IDI, 
NTNU, Trondheim, 2003. 

[17] J X Dong, A Krzyzak, C Y Suen. “A fast Parallel 
Optimization for Training Support Vector Machine.” 
Proceedings of 3rd International Conference on 
Machine Learning and Data Mining, 2003: 96-105. 

http://grids.ucs.indiana.edu/ptliupages/publications/UsesCasesforDIC-Aug%209-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/UsesCasesforDIC-Aug%209-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/UsesCasesforDIC-Aug%209-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/UsesCasesforDIC-Aug%209-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Advances_in_Cheminformatics_Methodolo_3.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Advances_in_Cheminformatics_Methodolo_3.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Advances_in_Cheminformatics_Methodolo_3.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Advances_in_Cheminformatics_Methodolo_3.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CetraroWriteupJune11-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CetraroWriteupJune11-09.pdf
http://www.hpcc.unical.it/hpc2008/

	Study on Parallel SVM Based on MapReduce
	1 Introduction
	2 LibSVM
	2.1 Support Vector Machines
	2.2 libSVM

	3 Architecture of Twister
	4 Parallel SVM based on Twister
	4.1 Architecture of Parallel SVM
	4.2 Program flow
	4.3 Computation time analysis

	5 Examples
	5.1 Adult data analysis
	5.1.1 Data source
	5.1.2 Training process
	5.1.3 Feature selection with correlation coefficient
	5.1.4 Results analysis

	5.2 Forest Cover type Classification
	5.2.1 Data source
	5.2.2 Analysis preparation
	5.2.3 Training process
	5.2.4 Feature selection with correlation coefficient
	5.2.5 Result analysis

	5.3 Heart disease classification
	5.3.1 Data source
	5.3.2 Result analysis


	6 Conclusions

