
Study on Parallel SVM Based on MapReduce

Zhanquan Sun1, Geoffrey Fox2
1 Key Laboratory for Computer Network of Shandong Province, Shandong Computer Science Center,

Jinan, Shandong, 250014, China
2School of Informatics and Computing, Pervasive Technology Institute, Indiana University Bloomington,

Bloomington, Indiana, 47408, USA

Abstract - Support Vector Machines (SVM) are powerful
classification and regression tools. They have been widely
studied by many scholars and applied in many kinds of
practical fields. But their compute and storage requirements
increase rapidly with the number of training vectors, putting
many problems of practical interest out of their reach. For
applying SVM to large scale data mining, parallel SVM are
studied and some parallel SVM methods are proposed. Most
currently parallel SVM methods are based on classical MPI
model. It is not easy to be used in practical, especial to large
scale data-intensive data mining problems. MapReduce is an
efficient distribution computing model to process large scale
data mining problems. Some MapReduce software were
developed, such as Hadoop, Twister and so on. In this paper,
parallel SVM based on iterative MapReduce model Twister is
studied. The program flow is developed. The efficiency of the
method is illustrated through analyzing practical problems.

Keywords: Parallel SVM, Large scale data, MapReduce,
Twister

1 Introduction
 With the development of electronic and computer
technology, the quantity of electronic data is in exponential
growth [1]. Data deluge has become a salient problem to be
solved. Scientists are overwhelmed with the increasing
amount of data processing needs arising from the storm of
data that is flowing through virtually every science field, such
as bioinformatics [2-3], biomedical [4-5], Cheminformatics
[6], web [7] and so on. Then how to take full use of these
large scale data to support decision is a big problem
encountered by scientists. Data mining is the process of
discovering new patterns from large data sets involving
methods at the intersection of artificial intelligence, machine
learning, statistics and database systems. It has been studied
by many scholars in all kinds of application area for many
years and many data mining methods have been developed
and applied to practice. But most classical data mining
methods out of reach in practice in face of big data.
Computation and data intensive scientific data analyses are
increasingly prevalent in recent years. Efficient
parallel/concurrent algorithms and implementation techniques
are the key to meeting the scalability and performance
requirements entailed in such large scale data mining
analyses. Many parallel algorithms are implemented using

different parallelization techniques such as threads, MPI,
MapReduce, and mash-up or workflow technologies yielding
different performance and usability characteristics [8]. MPI
model is efficient in computation intensive problems,
especially in simulation. But it is not easy to be used in
practical. MapReduce is a cloud technology developed from
the data analysis model of the information retrieval field.
Several MapReduce architectures are developed now. The
most famous is the Google, but the source code is not open.
Hadoop is the most popular open source MapReduce
software. It has been adopted by many huge IT companies,
such as Yahoo, Facebook, eBay and so on. The MapReduce
architecture in Hadoop doesn’t support iterative Map and
Reduce tasks, which is required in many data mining
algorithms. Professor Fox developed an iterative MapReduce
architecture software Twister. It supports not only non-
iterative MapReduce applications but also an iterative
MapReduce programming model. The manner of Twister
MapReduce is “configure once, and run many time” [9-10]. It
can be applied on cloud platform. It will be the popular
MapReduce architecture in cloud computing and can be used
in data intensive data mining problems.
 Support Vector Machines are powerful classification
and regression tools [11]. Many SVM software models have
been developed, such as libSVM, lightSVM, ls-SVM and so
on. LibSVM is taken as the most efficient SVM model and
widely applied in practice because of its excellent property
[12]. But SVM’s compute and storage requirements increase
rapidly with the number of training vectors, putting many
problems of practical interest out of their reach. The core of
an SVM is a quadratic programming problem (QP),
separating support vectors from the rest of the training data.
For improving the training speed of SVM, many efforts have
been done. Reference [13] accelerates the QP with
‘chunking’, where subsets of the training data are optimized
iteratively, until the global optimum is reached. Sequential
Minimal Optimization (SMO) [14], which reduces the chunk
size to 2 vectors, is the most popular of these algorithms.
Eliminating non-support vectors early during the optimization
process is another strategy that provides substantial savings in
computation. Parallelization has been proposed by splitting
the problem into smaller subsets and training a network to
assign samples to different subsets [15]. Variations of the
standard SVM algorithm, such as the Proximal SVM have
been developed that are better suited for parallelization [16],
but how widely they are applicable, in particular to high-

dimensional problems, remains to be seen. A parallelization
scheme was proposed where the kernel matrix is
approximated by a block-diagonal [17]. Most of parallel SVM
are based on MPI programming model. Little research work
has been done with MapReduce work.
 Based on current research work of SVM and Twister
MapReduce framework, the paper develops a parallel SVM
model based on MapReduce. In this model, training samples
are divided into subsections. Each subsection is trained with a
SVM model. In this paper, libSVM is used to train each
subSVM. The non-support vectors are filtered with subSVMs.
The support vectors of each subSVM are taken as the input of
next layer subSVM. The global SVM model will be obtained
through iteration. The MapReduce based SVM model is
encoded with Java language.
 The following of the paper is organized as follows.
LibSVM method is introduced briefly in part 2. The Twister
model is introduced in part 3. MapReduce based parallel
SVM model and its program flow is introduced in part 4. Two
practical examples are analyzed with the proposed model in
part 5. At last some conclusions are summarized.
2 LibSVM
2.1 Support Vector Machines
 SVM first maps the input points into a high-dimensional
feature space with a nonlinear mapping function and then
carries through linear classification or regression in the high-
dimensional feature space. The linear regression in high-
dimension feature space corresponds to the nonlinear
classification or regression in low-dimensional input space.
The general SVM can be described as follows.
 Let 𝑙 training samples be 𝑇 = {(𝑥1,𝑦1),⋯ , (𝑥𝑙 ,𝑦𝑙)},
where 𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ {1,−1} (classification) or 𝑦𝑖 ∈ 𝑅
(regression), 𝑖 = 1,⋯ , 𝑙. Nonlinear mapping function is
𝑘�𝑥𝑖 , 𝑥𝑗� = ∅(𝑥𝑖)∅�𝑥𝑗�. Classification SVM can be
implemented through solving the following equations.

min
𝑤,𝜉𝑖,𝑏

�
1
2
‖𝑤‖2 + 𝐶�𝜉𝑖

𝑖

�

𝑠. 𝑡.𝑦𝑖(Φ𝑇(𝑋𝑖)𝑤 + 𝑏) ≥ 1 − 𝜉𝑖 ∀𝑖 = 1,⋯ ,𝑛 (1)
𝜉𝑖 ≥ 0 ∀𝑖 = 1,⋯ ,𝑛

 By introducing Lagrangian multipliers, the optimization
problem can be transformed into its dual problem.

min
𝛼
�𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖 , 𝑥𝑗)
𝑖,𝑗

−�𝛼𝑖

𝑙

𝑖=1

𝑠. 𝑡. 𝑦𝑇𝜶 = 0 (2)
0 ≤ 𝛼𝑖 < 𝐶, 𝑖 = 1,⋯ , 𝑙

 After obtaining optimum solution 𝑎∗,𝑏∗, the following
decision function is used to determine which class the sample
belongs to.

𝑓(𝑥) = 𝑠𝑔𝑛�∑ 𝑦𝑖𝛼𝑖∗𝐾(𝑥𝑖 , 𝑥)𝑙
𝑖=1 + 𝑏∗� (3)

 The classification precision of the SVM model can be
calculated as

Accuracy =
#correctly predicted data

#total testing data
× 100%

2.2 libSVM
 LibSVM is taken as the most efficient SVM software. It
is an integrated software for support vector classification,
regression, and distribution estimation. Most efficient
analysis models are included. For example, C-SVC and nu-
SVC classification models, epsilon-SVR and nu-SVR
regression models, and one-class SVM distribution
estimation. For improving the classification correct rate, cross
validation is adopted. For processing unbalancing
classification problem, weighted and probability models are
adopted. The detail of libSVM can be found in [12]. In this
paper, C-SVC libSVM model is selected to analyze the
classification problems.

3 Architecture of Twister
 There are many parallel algorithms with simple iterative
structures. Most of them can be found in the domains such as
data clustering, dimension reduction, link analysis, machine
learning, and computer vision. These algorithms can be
implemented with iterative MapReduce computation.
Professor Fox developed the first iterative MapReduce
computation model Twister. It has several components, i.e.
MapReduce main job, Map job, Reduce job, and combine job.
Twister’s programming model can be described as in figure 1.

Fig. 1 Program model of Twister

 MapReduce jobs are controlled by the client node
through a multi-step process. During configuration, the client
assigns MapReduce methods to the job, prepares KeyValue
pairs and prepares static data for MapReduce tasks through
the partition file if required. Between iterations, the client
receives results collected by the Combine method, and, when
the job is done, exits gracefully. The message communicate
between job is realized with message brokers, i.e.
NaradaBrokering or ActiveMQ.
 Map daemons operate on computation nodes, loading
the Map classes and starting them as Map workers. During
initialization, Map workers load static data from the local disk
according to records in the partition file and cache the data
into memory. Most computation tasks defined by the users
are executed in the Map workers. Twister uses static

http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone

scheduling for workers in order to take advantage of the local
data cache. In this hybrid computing model, daemons
communicate with the client through messages.
 Reduce daemons operate on computation nodes. The
number of reducers is prescribed in client configuration step.
The reduce jobs depend on the computation results of Map
jobs. The communication between daemons is through
messages.
 Combine job is to collect MapReduce results. It operates
on client node. Twister uses scripts to operate on static input
data and some output data on local disks in order to simulate
some characteristics of distributed file systems. In these
scripts, Twister parallel distributes static data to compute
nodes and create partition file by invoking Java classes. For
data which are output to the local disks, Twister uses scripts
to gather data from all compute nodes on a single node
specified by the user.

4 Parallel SVM based on Twister
4.1 Architecture of Parallel SVM
 The parallel SVM is based on the cascade SVM model.
The SVM training is realized through partial SVMs. Each
subSVM is used as filter. This makes it straightforward to
drive partial solutions towards the global optimum, while
alternative techniques may optimize criteria that are not
directly relevant for finding the global solution. Through the
parallel SVM model, large scale data optimization problems
can be divided into independent, smaller optimizations. The
support vectors of the former subSVM are used as the input
of later subSVMs. The subSVM can be combined into one
final SVM in hierarchical fashion. The parallel SVM training
process can be described as in figure 2.

Fig. 2 training flow of parallel SVM

 In the architecture, the sets of support vectors of two
SVMs are combined into one set and to be input a new SVM.
The process continues until only one set of vectors is left. In
this architecture a single SVM never has to deal with the
whole training set. If the filters in the first few layers are
efficient in extracting the support vectors then the largest
optimization, the one of the last layer, has to handle only a
few more vectors than the number of actual support vectors.
Therefore, the training sets of each sub-problems are much
smaller than that of the whole problem when the support
vectors are a small subset of the training vectors. In this
paper, libSVM is adopted to train each subSVM.

4.2 Program flow
 From the parallel SVM architecture, the pseudo program
code based on Twister is as follows.
Preparation
 Computation environment configuration
 Data partition and distribution to the computation nodes
 Create partition file
Main class
 JobConf; //configure the MapReduce parameters and classnames
 TwisterDriver; //to initiate the MapReduce tasks
 While(condition) //not combined to one SVM
 JobConf; //reconfigure the MapReduce parameters;
 TwisterDriver; // initiate new MapReduce tasks, Broadcast combined

support vectors to each computation node;
 Get feedback results;
 If(condition) break; // if one SVM obtained, program finished
End mian class
Map class
 If(the first layer SVM)
 Load data from local file system;
 else
 Read data broadcasted by Main class
 End if
 Svm_train(); //the parameters of the SVM model are transformed through

jobConf.
 Collector; //sent the training result to Reduce job through message.
End Map class
Reduce class
 Read data transformed from Map job;
 Combine support vectors of each two subSVM into one sample set.
 Collect; //feedback all the trained support vectors
End Reduce class

 Firstly, computation nodes should be available. The
program can be described as follows. Original large scale data
D should be partitioned into smaller data sections
{D1,⋯ , Dn}. These data sections are put to computation
nodes. Then create partition file according to Twister
command. The partition file will be used in Twister
configuration.
 Based on the available computation environment,
jobConf is used to configure the computation parameters,
such as Map, Reduce, and Combine class names, number of
Map tasks and Reduce tasks, partition file and so on.
TwisterDriver will initiate the MapReduce task. Dynamic
parameters will be transformed to each computation node
through API interface.
 In each computation node, Map tasks are operated. In
the first layer of figure 2, sample data are loaded from local
file system according to partition file. In the following layers,
the training samples are support vectors of former layer.
LibSVM is used to train each subSVM. In the LibSVM,
Sequential Minimal Optimization is used to select the workset
in decomposition methods for training support vector
machines [14]. C-SVC model is used to train classification
SVM. Trained support vectors are sent to the Reduce jobs.
 In the Reduce job, all support vectors of all Map jobs are
collected together and feed back to client. Through iteration,
the training process will stop when all subSVM are combined
to one SVM.

4.3 Computation time analysis
 The time cost of SVM can be divided into following
sections. The computation time complexity of libSVM is
O(n2). The transformation time of data between Map and
Reduce nodes is depend on the bandwidth of the connection
network. The transfer time can be described as ttrans. The
combination time cost of two SVMs is O(n). When training
data set is divided into m partitions, the computation cost is
calculated as follows. The layers of cascade SVM is N =
log2 m. Suppose that the ratio between the number of support
vectors and that of whole training sample is α (0 < α < 1)
and the ratio between support vectors and that of training
sample except the first layer is β(1 < β < 2), i.e. the number
of the last layer in Fig. 2 is nN = nαβ and the number of
training sample of the first layer is almost 𝑛1 = 𝑛/𝑚. The
number of training samples of the 𝑖 layer is 𝑛𝑖 = 𝑛𝛼𝛽 ∗

�𝛽
2
�
𝑁−𝑖

. So the computation time can be calculated as follows.

𝑡 = 𝑂 ��𝑛
𝑚
�
2
� + ∑ 𝑂 ��𝑛𝛼𝛽 ∗ �𝛽

2
�
𝑁−𝑖

�
2
�2

𝑖=𝑁

+𝑂 �∑ 𝑛𝛼𝛽 ∗ �𝛽
2
�
𝑁−𝑖

∗ 2𝑁−𝑖2
𝑖=𝑁−1 � + 𝑡𝑡𝑟𝑎𝑛𝑠 (4)

 Overhead of data transfer mainly includes three parts.
The first part is data transfer from Maptask nodes to
Reducetask nodes. The transferred data are the support
vectors obtained by Maptask nodes. The second part is data
transfer from Reducetask nodes to server node. The
transferred data is the support vectors also. The third part is
the data transfer from server nodes to Maptask node. The
transferred data is the training samples combined by two
subSVM’s support vectors. The overhead of data transfer
depend on the bandwidth of the MapReduce cluster.
 From the architecture of parallel SVM, we can find that
it is hierarchal structure. The low level SVM training has to
be performed when all the upper level subSVM be trained. In
the last level of the architecture, all the support vectors should
be included in the training samples. The sample size must be
bigger than the number of support vectors. When the ratio
between support vector and training sample is bigger the
speed up will be less. It is the shortcoming of the cascade
SVM model.

5 Examples
 All examples are analyzed in India cluster node of
FutureGrid. Eucalyptus platform is adopted to configure the
MapReduce computation environment. Twister0.9 software is
deployed in each computation nodes. ActiveMQ is used as
message broker. The configuration of each virtual machine is
as follows. Each node is installed Ubuntu Linux OS. The
processor is 3GHz Intel Xeon with 10GB RAM.

5.1 Adult data analysis
5.1.1 Data source
 The source data are downloaded from NEC laboratory
American Inc. website http://ml.nec-

labs.com/download/data/milde/. In the adult database, 123
attributes are labeled 2 classes. Each attribute denoted by
binary variable, i.e. 0 or 1. Labels are denoted by +1 or -1. It
is a binary classification problem. The database includes two
files. One is used for training and the other is used for testing.
The training file includes 32562 samples. The testing file
includes 16282 samples. In this example, 5 computational
nodes are used. Training data are partitioned into n sections
randomly. Each section has roughly equal number data.

5.1.2 Training process
 The problem is taken as a binary classification problem.
C-SVC model is adopted. The parameter of the SVM model
is set as follows. Constant C is set 1, radial basis function is
taken as kernel function, and gamma is set as 0.01. Firstly, the
example is analyzed with only 1 computation node, i.e.
classical SVM method is used to train the SVM model. The
trained model is used to predict the testing samples. The
training time and classification correct rate are listed in Table
1. Secondly, the example is analyzed with the parallel SVM
based on map/reduce. For comparison, the sample is
partitioned into 2, 3, 4, 5 sub-samples respectively. When the
sample is partitioned into 2 sub-samples, 2 computing nodes
are used. The training time and classification rate of each
partition form are listed in table 1. And so forth to the other
partitions.

Table 1 analysis result of SVM with different partition nodes
Number
of nodes

Number
of SVs

Training
time(s)

Classification
correct rate

1 11957 490.591 84.82
2 11933 281.152 84.98
4 11908 239.914 83.06
8 11887 237.441 82.74

5.1.3 Feature selection with correlation coefficient
 In the example, there are 123 attribute variables. Most
variables provide minor contribution in the classification. For
improve the training speed and reduce the noise effect of
attribute variables, correlation coefficient is used to measure
the correlation between class variable 𝑌 and attribute variable
𝑋. The attribute variables are selected according to the
correlation values. The correlation coefficient is calculated as
the following equation.

𝜌𝑋,𝑌 = 𝑐𝑜𝑣((𝑋,𝑌)
𝜎𝑋𝜎𝑌

= 𝐸[(𝑥−𝜇𝑋)(𝑦−𝜇𝑌)]
𝜎𝑋𝜎𝑌

 (5)
where 𝑐𝑜𝑣((𝑋,𝑌) is the covariance of the two variables,
𝜎𝑋,𝜎𝑌 are the standard deviations of 𝑋 and 𝑌. After
calculating the correlation coefficient, the pruning value is set
0.1. At last, 34 attribute variables are selected. The training
result is listed in table 2.

Table 2 analysis result of SVM based on feature selection
nodes

Number
Number
of SVs

Training
time(s)

Classification
correct rate

1 11702 154.098 84.10
2 11694 94.338 84.06
4 11710 86.142 83.95
8 11692 83.57 82.99

5.1.4 Results analysis
 The analysis results are shown as in Fig.3 and Fig. 4.
From Fig.3 we can find that the training time can be reduced

http://ml.nec-labs.com/download/data/milde/
http://ml.nec-labs.com/download/data/milde/

greatly when the sample is partitioned 2 parts. But with the
increase of partition number, the training time reduction will
become slow. From Eq. (8), the computation cost mostly
concentrate on the training calculation of each subSVM. The
example was analyzed in HPC cluster. The data transfer time
cost is minor. In this example, the ratio α ≈ 0.35 and β ≈
1.2. The last layer will occupy the mainly part computation
time and it will not decrease with the increase of partition
number. With the decrease of α, the computation time can be
reduced more. With the introduction of feature selection, the
computation can be reduced greatly without decreasing the
correct classification rate.

Fig. 3 Training time based on different partition nodes

Fig. 4 Correct rate based on different partition

5.2 Forest Cover type Classification
5.2.1 Data source
 The source data are downloaded from
http://ftp.ics.uci.edu/pub/machine-learningdatabases/covtype/.
The data is used to classify forest cover type. The original
data are collected by Remote Sensing and GIS Program,
Department of Forest Sciences, College of Natural Resources,
Colorado State University. Natural resource managers
responsible for developing ecosystem management strategies
require basic descriptive information including inventory data
for forested lands to support their decision-making processes.
The purpose is to predict the forest cover type according to
cartographic variables’ values. The square of each observed
section is 30 x 30 meter cell. There are 54 columns in each
data item. They denote 12 variables, i.e. Elevation, Aspect,
Slope,Horizontal_distance_to_hydrology,Vertical_Distance_
To_Hydrology,Horizontal_Distance_To_Roadways,Hillshade
_9am,Hillshade_Noon,Hillshade_3pm,Horizontal_Distance_
To_Fire_Points, Wilderness_Area, and Soil_Type, where
Wilderness_Area is denoted by 4 binary columns and
Soil_Type is denoted by 40 binary columns. They are labeled
as 7 cover types, i.e. Spruce/Fir, Lodgepole Pine, Ponderosa

Pine, Cottonwood/Willow, Aspen, Douglas-fir, and
Krummholz. There are 581012 samples in total. In this
example, 28000 samples are taken as training samples and the
left are taken as test samples.

5.2.2 Analysis preparation
 In this example, 5 computational nodes are used.
Training data are partitioned into n sections randomly. Each
section has roughly equal number data. Each attribute is
normalized according to the following equation.

 Let X denote attribute variable. The maximum value of
X is xmax and the minimum value is xmin. The range of
normalized attribute is set [0, 1]. The normalized equation is

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥min

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

5.2.3 Training process
 The problem is taken as a multi-value classification
problem. Multiclass classification is realized with pairwise
method, i.e. k class SVM is realized through k(k − 1)/2
binary SVMs. The “one against one” strategy, also known as
“pairwise coupling”, “all pairs” or “round robin”, consists in
constructing one SVM for each pair of classes. Thus, for a
problem with k classes, k(k-1)/2 SVMs are trained to
distinguish the samples of one class from the samples of
another class. Usually, classification of an unknown pattern is
done according to the maximum voting, where each SVM
votes for one class.
 In this example, C-SVC model is adopted. The
parameter of the SVM model is set as follows. Constant C is
set 1, radial basis function is taken as kernel function, and
gamma is set as 0.01. Firstly, the example is analyzed with
only 1 computation node, i.e. classical SVM method is used
to train the SVM model. The trained model is used to predict
the testing samples. The training time and classification
correct rate are listed in Table 2. Secondly, the example is
analyzed with the parallel SVM based on map/reduce. For
comparison, the sample is partitioned into 2, 3, 4, 5 sub-
samples respectively. When the sample is partitioned into 2
sub-samples, 2 computing nodes are used. The training time
and classification rate corresponding to each partition form
are listed in table 3.

Table 3 analysis results with different partition nodes
nodes
Number

Number
of SVs

Training
time(s)

Classification
correct rate

1 22177 396.125 58.76
2 21831 297.32 58.35
4 20941 251.402 58.24
8 20139 219.346 57.96

5.2.4 Feature selection with correlation coefficient
 In the example, there are 54 attribute variables. Most
variables provide minor contribution in the classification,
especially the Soil_Type variables. For improve the training
speed and reduce the noise effect of attribute variables,
correlation coefficient Eq. (9) is used to select attribute
variables. After calculating the correlation coefficient, the

1 2 3 4 5 6 7 8
50

100

150

200

250

300

350

400

450

500

nodes number

tra
in

in
g

tim
e(

s)

all variable
feature selection

1 2 3 4 5 6 7 8
82.5

83

83.5

84

84.5

85

nodes number

co
rre

ct
 p

er
ce

nt
(%

)

all variable
feature selection

http://ftp.ics.uci.edu/pub/machine-learningdatabases/covtype/

pruning value is set 0.1. At last, 18 attribute variables are
selected. The training result is listed in table 4.

Table 4 analysis result of SVM based on feature selection
Number
of nodes

Number
of SVs

Training
time(s)

Classification
correct rate

1 14624 82.022 57.46
2 14198 58.899 57.99
4 13298 55.154 58.57
8 12207 45.029 58.65

5.2.5 Result analysis
 This example is a multiclass classification problem.
How to improve classification correct rate of multi-class is
still a big problem. From Fig.5 we can find that the training
time can be reduced greatly when the sample is partitioned 2
parts. But with the increase of partition number, the training
time reduction will become slow. In this example, the ratio
α ≈ 0.4 and β ≈ 1.2. It is similar to the analysis problem of
example 1. With the introduction of feature selection, the
computation can be reduced greatly. From the analysis correct
rate we can find that correct rate will not decrease too much.

Fig. 5 training time based on different partition nodes

Fig. 6 Correct rate based on different partition

5.3 Heart disease classification
5.3.1 Data source
 There are 270 clinic reports. Each report includes 13
factor variables. Clinic is divided into 2 classes. For testing
the efficiency of the proposed cascade SVM, we replicate the
data 500 times, 1000 times, and 2000 times separately. The
generated data sets has 135000, 270000, 540000 samples
separately. The initial data set is used to test the SVM model.
The training time and correct rates based on different partition
styles are listed in table 5, table 6 and table 7 respectively.

Table 5 analysis result with data replicated 500 times
Number
of nodes

Number
of SVs

Training
time(s)

Classification
correct rate

1 7585 313.755 99.629
2 7712 148.184 99.259
4 7690 87.523 98.518
8 7487 76.773 98.148

Table 6 analysis result with data replicated 1000 times
Number
of nodes

Number
of SVs

Training
time(s)

Classification
correct rate

1 8972 539.28 100
2 9055 234.49 99.63
4 8739 123.887 98.15
8 8688 86.503 97.41

Table 7 analysis result with data replicated 2000 times
Number
of nodes

Number
of SVs

Training
time(s)

Classification
correct rate

1 N/A N/A N/A
2 9901 578.507 100
4 9650 266.587 99.63
8 9202 158.531 99.63

 The analysis result is shown as in figure 7, figure 8 and
figure 9.

Figure 7 training time based on different partition nodes

Figure 8 Correct rate based on different partition

Fig. 9 training time based on different parallelism corresponding to

different sample size
5.3.2 Result analysis
 From the above analysis results we can find that the
bigger the sample size the more obvious of the speed up.

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

nodes number

tra
in

in
g

tim
e(

s)

all variable
feature selection

1 2 3 4 5 6 7 8
57.4

57.6

57.8

58

58.2

58.4

58.6

58.8

nodes number

co
rre

ct
 p

er
ce

nt
(%

)

all variable
feature selection

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

nodes number

tra
in

in
g

tim
e(

s)

data copy 2000 times
data copy 1000 times
data copy 2000 times

1 2 3 4 5 6 7 8
97

97.5

98

98.5

99

99.5

100

nodes number

co
rre

ct
 ra

te
(%

)

data copy 2000 times
data copy 1000 times
data copy 2000 times

1 2 3 4
0

100

200

300

400

500

600

sample size

tra
in

in
g

tim
e

(s
)

2 nodes
4 nodes
8 nodes

From figure 7, we can find that when the sample size is very
big, i.e. 540000 samples, it can’t be processed with one single
computation node. It is out of the memory. It is necessary to
process big size problem with parallel style. The training time
will decrease slowly when the parathion number is bigger
than 8. It is because of two reasons. The first reason is that he
ratio between optimum computation time and data transform
overhead is less. The other reason is that the sample size of
the last level can’t be less than the number of support vectors.
The computation cost will account a big proportion. So the
computation will decrease very slowly. From fig. 9 we can
find the computation time based on different partition style is
approximate linear relationship to sample size.

6 Conclusions
 Data-intensive data mining is still a big problems faced
by computer scientist. SVM is taken as a most efficient
classification and regression model. The computation cost of
SVM is square proportion to the number of training data.
Classical SVM model is difficult to analyze large scale
practical problems. Parallel SVM can improve the
computation speed greatly. In this paper, parallel SVM model
based on iterative MapReduce is proposed. It is realized with
Twister software. Through example analysis it shows that the
proposed cascade SVM based on Twister can reduce the
computation time greatly. But it doesn't mean that it is better
to partition sample data into many parts. The computation
time will not decrease through the analysis of the computation
time. The partition number can be estimated according to the
concrete problems. For increase the computation speed, the
cascade SVM can be combined with other feature selection
and feature extraction methods. In total, the analysis results
show that the parallel SVM based on iterative MapReduce is
efficient in data intensive problems.

Acknowledgements
 This work is partially supported by Provincial
Outstanding Research Award Fund for young scientist (No.
BS2009DX016) and Provincial Fund for Nature project (No.
ZR2009FM038).

References
[1] J R Swedlow, G Zanetti, C Best. “Channeling the data

deluge”. Nature Methods, 2011, 8: 463-465.
[2] G C Fox, X H Qiu et al. “Case Studies in Data

Intensive Computing: Large Scale DNA Sequence
Analysis.” The Million Sequence Challenge and
Biomedical Computing Technical Report, 2009

[3] X H Qiu, J Ekanayake, G C Fox et al. “Computational
Methods for Large Scale DNA Data Analysis.”
Microsoft eScience workshop, 2009

[4] J A Blake, C J Bult. Beyond the data deluge: “Data
integration and bio-ontologies.” Journal of Biomedical
Informatics, 2006, 39(3), 314-320.

[5] J Qiu. “Scalable Programming and Algorithms for Data
Intensive Life Science.” Applications Data-Intensive
Sciences Workshop, 2010

[6] R Guha, K Gilbert, G C Fox, et al. “Advances in
Cheminformatics Methodologies and Infrastructure to
Support the Data Mining of Large, Heterogeneous
Chemical Datasets.” Current Computer-Aided Drug
Design, 2010, 6: 50-67.

[7] C C Chang, B He, Z Zhang. “Mining semantics for
large scale integration on the web: evidences, insights,
and challenges.” SIGKDD Explorations, 2004: 6(2):67-
76.

[8] G C Fox, S H Bae, et al. “Parallel Data Mining from
Multicore to Cloudy Grids.” High Performance
Computing and Grids workshop, 2008

[9] B J Zhang, Y Ruan et al. “Applying Twister to
Scientific Applications.” Proceedings of CloudCom,
2010

[10] J Ekanayake, H Li, et al. “Twister: A Runtime for
iterative MapReduce.” The First International
Workshop on MapReduce and its Applications of ACM
HPDC, 2010

[11] C. Cortes, V. Vapnik. “Support Vector Networks.”
Machine Learning,1995, 20: 273-297

[12] C C Chang, C J Lin. “LIBSVM: a library for support
vector machines.” ACM Transactions on Intelligent
Systems and Technology, 2011, 27(2): 1-27.

[13] B Boser, I Guyon, V Vapnik. “A training algorithm for
optimal margin classifiers.” The 5th Annual Workshop
on Computational Learning Theory, 1992.

[14] R E Fan, P H Chen, C J Lin. “Working set selection
using second order information for training SVM.”
Journal of Machine Learning Research, 2005, 6: 1889-
1918.

[15] H P Graf, E Cosatto, et al. “Parallel support vector
machines: the Cascade SVM.” Advances in Neural
Information Processing Systems, MIT Press, 2005.

[16] A Tveit, H Engum. “Parallelization of the Incremental
Proximal Support Vector Machine Classifier using a
Heap-based Tree Topology.” Tech. Report, IDI,
NTNU, Trondheim, 2003.

[17] J X Dong, A Krzyzak, C Y Suen. “A fast Parallel
Optimization for Training Support Vector Machine.”
Proceedings of 3rd International Conference on
Machine Learning and Data Mining, 2003: 96-105.

http://grids.ucs.indiana.edu/ptliupages/publications/UsesCasesforDIC-Aug%209-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/UsesCasesforDIC-Aug%209-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/UsesCasesforDIC-Aug%209-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/UsesCasesforDIC-Aug%209-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Advances_in_Cheminformatics_Methodolo_3.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Advances_in_Cheminformatics_Methodolo_3.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Advances_in_Cheminformatics_Methodolo_3.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Advances_in_Cheminformatics_Methodolo_3.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CetraroWriteupJune11-09.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CetraroWriteupJune11-09.pdf
http://www.hpcc.unical.it/hpc2008/

	Study on Parallel SVM Based on MapReduce
	1 Introduction
	2 LibSVM
	2.1 Support Vector Machines
	2.2 libSVM

	3 Architecture of Twister
	4 Parallel SVM based on Twister
	4.1 Architecture of Parallel SVM
	4.2 Program flow
	4.3 Computation time analysis

	5 Examples
	5.1 Adult data analysis
	5.1.1 Data source
	5.1.2 Training process
	5.1.3 Feature selection with correlation coefficient
	5.1.4 Results analysis

	5.2 Forest Cover type Classification
	5.2.1 Data source
	5.2.2 Analysis preparation
	5.2.3 Training process
	5.2.4 Feature selection with correlation coefficient
	5.2.5 Result analysis

	5.3 Heart disease classification
	5.3.1 Data source
	5.3.2 Result analysis

	6 Conclusions

